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Summary
AIMS: Previous studies found increased cardiovascu-
lar mortality during hot days, while emergency hospital ad-
missions were decreasing. We explored potential underly-
ing reasons by analysing clinically similar cardiovascular
disease groups taking into account primary, underlying
and immediate causes of death.

M ETHODS AND RESULTS: We assessed associations 
of daytime maximum temperature in relation to cardio-
vascular deaths and emergency hospital admissions be-
tween 1998 and 2016 in Switzerland. We applied condi-
tional quasi-Poisson models with non-linear distributed lag 
functions to estimate relative risks (RRs) of daily cardio-
vascular mortality and morbidity for temperature increas-
es from the median (22 °C) to the 98th percentile (32 °C) 
of the warm season temperature distribution with 10 days 
of lag. Cardiovascular mortality (n = 163,856) increased 
for total cardiovascular disease (RR 1.13, 95% confidence 
in-terval [CI] 1.08–1.19) and the disease groups hyperten-
sion (1.18, 1.02–1.38), arrhythmia (1.29, 1.08–1.55), heart 
failure (1.22, 1.05–1.43) and stroke of unknown origin 
(1.20, 1.02–1.4). In contrast, emergency hospital admis-
sions (n = 447,577) decreased for total cardiovascular dis-
ease (0.91, 0.88–0.94), hypertension (0.72, 0.64–0.81), 
heart failure (0.83, 0.76–0.9) and myocardial infarction 
(0.88, 0.82–0.95). Opposing heat effects were most pro-
nounced for disease groups associated with diuretic and 
antihypertensive drug use, with the age group ≥75 years 
at highest risk.

CONCLUSIONS: Volume depletion and vasodilation from
heat stress plausibly explain the risk reduction of heat-re-
lated emergency hospital admissions for hypertension and
heart failure. Since primary cause of death mostly refers to
the underlying chronic disease, the seemingly paradoxical
heat-related mortality increase can plausibly be explained
by an exacerbation of heat effects by antihypertensive and
diuretic drugs. Clinical guidelines should consider recom-
mending strict therapy monitoring of such medication dur-
ing heatwaves, particularly in the elderly.

Introduction

Climate change has been described as the biggest global
health threat of the 21st century, partly due to more fre-
quent and intense heatwaves [1]. Previous studies have de-
scribed increasing mortality rates at high ambient temper-
ature compared with the country- or city-specific optimal
temperature range [2–9]. There is evidence that cardiovas-
cular diseases, which are the leading cause of death glob-
ally [10], are among the main causes of heat-related deaths
[11].

Heat effects on cardiovascular morbidity are less clear
[12]. Previous studies reported a slight heat-related mor-
bidity increase for cardiovascular diseases, or no effect
with a tendency for a decrease [2, 13, 14]. In Switzerland,
decreasing daily emergency hospital admissions for car-
diovascular disease were observed during the hot sum-
mer of 2015 [15].

The reasons for different heat effects on mortality and mor-
bidity are unclear. Some authors suggested that people die
before being admitted to the hospital [14]. A deeper look
into heat effects on different cardiovascular disease groups
has rarely been done [2]. Existing literature reports varying
effects, such as an increase in emergency hospital admis-
sions for ischaemic heart disease or stroke, but a decrease
for hypertension [16]. Furthermore, to our knowledge, pre-
vious studies took into account only the primary cause of
death.

The aim of this study was to explore the reasons for dif-
ferent heat effects on cardiovascular mortality and morbid-
ity to better inform clinical decisions and public health in-
terventions during hot spells. We therefore carried out a
detailed comparative analysis of heat-related mortality and
emergency hospital admissions. We used clinically rele-
vant cardiovascular disease groups and took into account
primary, underlying and immediate causes of death.

Materials and methods

Health and temperature data
The Swiss Federal Statistical Office (FSO) provided us
with daily mortality and emergency hospital admission da-
ta between 1998 and 2016 from the official cause of death
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statistics and the medical statistics of Swiss hospitals. Data
included cardiovascular primary causes of death and emer-
gency hospital admissions of Swiss residents according to
the International Classification of Diseases codes, 10th Re-
vision (ICD-10, I00-I99). The primary cause of death is
defined by the FSO based on a standardised procedure
evaluating information from the death certificates on un-
derlying, immediate and contributing causes of death. The
primary cause of death is for most disease groups identical
to the underlying cause of death and decisive for all publi-
cations [17]. Health data were aggregated into daily deaths
and daily number of emergency hospital admissions by
age (<75, ≥75 years), sex, disease group and seven geo-
graphic areas across Switzerland (so-called Swiss great re-
gions, supplementary fig. S1 in the appendix).

Before starting the data analyses, we created a diagnostic
framework comprising nine cardiovascular disease
groups (supplementary table S1): hypertension (I10–15),
myocardial infarction (I21–22), pulmonary embolism
(I26), arrhythmia (I44–49), heart failure (I50), haemor-
rhagic stroke (I60–62), ischaemic stroke (I63), stroke of
unknown origin (I64) and deep vein thrombosis (I80). Dis-
ease groups were defined based on common clinical diag-
noses that have a plausible cause-effect relationship with
heat. We assumed that the following heat effects may have
an influence on the diseases : volume depletion and periph-
eral vasodilation with subsequent reduction of cardiac pre-
and afterload on hypertension and heart failure [18–20],
sweating with subsequent electrolyte imbalances on car-
diac arrhythmias [21, 22], and pro- and anticoagulation
effects on thrombotic, infarction and bleeding events
[22–24]. To support these heat sensitivity pathways and to
evaluate potential other contributing effects of heat-relat-
ed mortality, we also compared the primary cause of death
with underlying (to describe chronic conditions) and im-
mediate causes of death by disease group.

Daily temperature data were collected from the IDAWEB
database, a service provided by MeteoSwiss, the Swiss
Federal Office of Meteorology and Climatology. We re-
stricted the analysis to the warm season (May to Septem-
ber).

Numbers of daily deaths and emergency hospital admis-
sions of each great region were linked to daily daytime
(6:00–18:00) maximum temperature measurements
(Tmax) from a close-by representative monitoring station.
A map showing the locations of the measurement stations
is provided in the appendix (fig. S1).

Statistical analysis
We analysed the short-term temperature-mortality and
temperature-morbidity relationships for cardiovascu-
lar disease using conditional quasi-Poisson regression
models. We applied distributed lag non-linear models (DL-
NM) to allow for non-linear and delayed effects of tem-
perature [25]. All regions were pooled into one dataset. To
control for potential differences by year, month, weekday
and region, a stratum variable was included in the model
that matched the same days of the week in the same month
of the same year and the same geographic region.

The model specifications were optimised for both mortal-
ity (using primary cause of death) and morbidity models
using the total number of cardiovascular deaths deaths and

emergency hospital admissions, and model coefficients
were then estimated for the individual disease groups. For
the temperature dimension of the so-called cross-basis
function of the DLNM, we chose a model with a natural
spline function with three internal knots at the 10th, 75th
and 90th percentiles. For the lag dimension of the cross-
basis, we used a natural spline function with two equally
spaced internal knots on the log scale. We chose a 10-day
lag period to capture delayed effects and potential harvest-
ing. We selected the model specifications based on simi-
lar studies on the effect of heat on health [6, 26]. To vali-
date the model, we tested different numbers and positions
of knots in a sensitivity analysis, which showed similar re-
sults (figs S2 and S3).

Associations between Tmax and health outcomes were ex-
pressed as cumulative relative risks (RRs) over the whole
lag period. We used the median warm season Tmax over
all geographic areas and years as the reference. Cumulative
and lag-specific RRs were estimated for the 98th percentile
of Tmax, defined as a “hot day” (similar to previous re-
search [4–6, 9]). To identify vulnerable population sub-
groups, we also assessed the effects by age (<75, ≥75
years). All analyses were conducted using the statistical
software environment R (version 3.4.4) with the package
dlnm [25].

Access to data and computing code
The health data used for this study are available under li-
cense from the Federal Statistical Office, Switzerland. The
computing code is available on request by e-mail from
the authors. All analysis was done on aggregated data, for
which no ethical approval is required in Switzerland.

Results

In total, our dataset contained 163,856 cardiovascular
deaths and 447,577 cardiovascular emergency hospital ad-
missions. The age distribution was balanced for the hos-
pital admissions (49% <75 years, 51% ≥75 years). Most
deaths (80%) occurred in the population aged ≥75
years. Fifty-six percent of deaths and 70% of emergency
hospital admissions were analysed in detail as part of our
diagnostic framework.

For the individual disease groups, the proportion of pa-
tients ≥75 years ranged between 37% (myocardial infarc-
tion) and 74% (heart failure) for emergency hospital ad-
missions , and between 62% (haemorrhagic stroke) and
92% (heart failure) for mortality. The detailed demograph-
ic structure of the data is shown in supplementary figures
S6 (deaths) and S7 (admissions) and supplementary table
S2.

Primary and underlying causes of death were the same
for most disease groups from the framework (69%). The
highest agreement was found for heart failure (94%) and
hypertension (92%). For myocardial infarction, agreement
with immediate cause of death was higher (72%, for details
see table S4).

Recorded Tmax during the warm season of the years
1998–2016 in the seven geographic regions in Switzerland
ranged between 3 °C and 40 °C. The median and 98th per-
centile of Tmax varied across monitoring stations between
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19– 25 °C and 29– 34 °C, respectively; resulting in an
overall median of 22 °C and 98th percentile of 32 °C.

For all cardiovascular diseases combined, an increase of
Tmax from 22 °C (median) to 32 °C (98th percentile) was
significantly associated with a 13% increase in deaths
(95% confidence Interval [CI] 8–19%) and a 9% decrease
in emergency hospital admissions (95% CI: 6–12%) . A
similar pattern was observed for hypertension and heart
failure (fig. 1, table 1). For arrhythmia and stroke of un-
known origin, mortality increased with temperature,
whereas morbidity did not. For myocardial infarc-
tion, emergency hospital admissions decreased, accompa-
nied by a tendency for a mortality increase at very high
temperatures. The remaining disease groups were smaller
(<10,000 cases) and did not show significant associations
between temperature and mortality or emergency hospital
admissions, except a significant reduction in hospital ad-
missions for deep vein thrombosis (fig. S6).

Stratified results by age showed exposure-response asso-
ciations similar to those of r the total population (figs S7
and S8, table S3). The mortality increase was greater in the
age group ≥75 years, whereas the reduction in emergency
hospital admissions was more prevalent in the age group
<75 years. In the age group <75 years, we found a signif-
icant heat-related mortality increase for ischaemic stroke
(RR 2.24), albeit with a large confidence interval (95% CI
1.07–4.73).

The time lag between high temperature and health out-
comes differed between disease groups but was mostly
around 0–4 days (figs. S9 and S10). For myocardial infarc-
tion and heart failure, we observed a mostly insignificant
mortality reduction after an initial mortality increase.

Discussion

With increasing temperature, cardiovascular emergency
hospital admissions decreased whereas mortality in-

creased. Specifically, mortality due to hypertension, ar-
rhythmia, heart failure and stroke of unknown origin as
primary causes of death increased with temperature. Daily
emergency hospital admissions decreased for hyperten-
sion, heart failure and myocardial infarction and remained
unchanged for stroke of unknown origin and arrhythmia.
Except for myocardial infarction, the primary cause of
death mainly refers to the underlying disease and not the
acute cause of death.

Both the overall effect and the results for the specific car-
diovascular disease groups were in good agreement with
previous work [15]. Increased heat-related mortality due
to heart failure, stroke and arrhythmia, and reductions in
rates of emergency hospital admissions for hypertension
and heart failure have been observed previously [16, 29].
A tendency for a heat-related increase of myocardial in-
farction mortality was seen only at very high temperatures
(>33 °C) and was thus less pronounced than in other stud-
ies. For myocardial infarction, we found a decrease in hos-
pital admissions instead of an increase [33].

Direct heat effects can plausibly explain decreasing emer-
gency hospital admissions due to hypertension and heart
failure. Volume depletion through sweating and peripheral
vasodilation reduces cardiac preload [21], cardiac afterload
[23] and blood pressure [18, 35]. In volume-overloaded
heart failure patients, this moves the operating point on
the Frank-Starling-curve (which represents the relationship
between distension of the heart and the force generated
by contraction) to a more optimal location [36], similar to
a targeted pharmacotherapy [28, 37]. Reduced emergency
hospital admissions due to these diseases are the result.

Against this background, the heat-related mortality in-
creases for hypertension and heart failure seem counter-
intuitive. However, the primary causes of death “hyper-
tension” and “heart failure” derive mostly from the
underlying, not the acute cause of death. The correspond-
ing immediate cause of death was mostly unspecific (table

Figure 1: Relative risks (RRs) for emergency hospital admissions (EHA) and mortality for cardiovascular (CVD) disease groups with more
than 10,000 cases by daytime maximum temperature. RRs are cumulative over the lag period of 10 days. Median daytime maximum tempera-
ture over the study period is used as reference.
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S4). Therefore, the excess mortality refers to patients dying
with, not of, chronic hypertension or heart failure. Conse-
quently, these patients did not necessarily suffer from acute
hypertension or acute congestive heart failure at the time of
death. They were likely taking antihypertensive or diuret-
ic medications though, which are the standard treatment
for chronic hypertension and heart failure [27, 28, 37, 38].
Antihypertensive medication can exacerbate heat effects
[39–42], which has led to recommendations for a dose re-
duction during hot spells in some countries [43, 44]. Dur-
ing routine post-mortem examination, heat effects are dif-
ficult to identify [45]. Thus, if a patient dies from
antihypertensive drug effects exacerbated by heat stroke,
an unspecific immediate cause of death would likely be
recorded. Meanwhile, in the absence of a better reason, it
is likely that the patients’ known chronic disease would be
recorded as the underlying, and ultimately primary, cause
of death. This can show as a heat-related mortality increase
for chronic diseases associated with antihypertensive
drugs, as observed in our analysis (fig. 2).

Increased heat vulnerability due to pathophysiological
changes offers an alternative explanation for the mortality
increase in heart failure [42], but cannot explain the cor-
responding decrease in emergency hospital admissions or
the results for hypertension.

An exacerbation of heat effects by antihypertensive drugs
can also partly explain the heat-related mortality increase
in cardiac arrhythmia and stroke of unknown origin, if co-
morbidities are considered. For atrial fibrillation, hyperten-
sion is reported as a comorbidity in about 77% of cases

[34]. For stroke, a Swiss study detected hypertension in
63.5% of the patients, and the CARes study from Texas
even in 86.5% of the cases. CARes also explicitly looked
for antihypertensive drug use and found it in 83% of stroke
patients [31, 32]. Thus, patients with atrial fibrillation or
stroke of unknown origin as primary cause of death were
likely also treated with antihypertensive drugs. The largest
part of the mortality increase for arrhythmia corresponds
to unexplained deaths: “cardiac arrest”, which is unspecif-
ic, was the most frequent primary cause of death in the ar-
rhythmia group (data not shown). Although the available
data do not allow conclusions to be drawn about the causes
for heat-related excess mortality for this subgroup, a con-
tribution of direct heat effects or antihypertensive drugs
can also not be ruled out.

A contribution of heat-induced electrolyte imbalances to
the mortality increase for cardiac arrhythmia is also pos-
sible, but does not explain the absence of an increase in
rates of emergency hospital admission.

Our results did not show a consistent picture regarding pre-
viously hypothesised impairment of the coagulation sys-
tem by heat [22–24].

For myocardial infarction, the observed slight decrease in
emergency hospital admissions may be explained by car-
dioprotective effects from warm weather, such as reduction
of cardiac pre- and afterload or reduced oxidative stress
[46]. Patients were also younger on average in this group,
suggesting that their thermoregulatory control was better
maintained than in older individuals [47]. Inadequate hy-

Table 1:
Summary of results for heat-related emergency hospital admissions (EHA) and mortality, comparison with the literature and possible explanations for observed heat effects for
cardiovascular disease groups >10,000 cases.

Disease
group a

Class Number
of cas-
es

RR (95%
CI) b

Effect Results from previous literature Diagnosis inv-
olves antihyper-
tensive drug use

Plausible explanations for effect in our study

Hypertension
(I10–15)

EHA 29,533 0.72
(0.64–0.81)

↓ 10.0% (95% CI 13.1–6.7%) risk reduction of ER
visits per 10°F. NB: 12.7% (95% CI 8.3–17.4)
excess risk for ER visits due to hypotension [16]

Yes [27] EHA reduction: Direct heat effect,. Mortality in-
crease: Heat-induced amplification of anti-hyper-
tensive drug effects

Deaths 17,142 1.18
(1.02–1.38)

↑ No data found

Heart failure
(I50)

EHA 57,440 0.83
(0.76–0.90)

↓ Insignificant decrease [16] Yes [28] EHA reduction: Direct heat effect, Mortality in-
crease: Heat-induced amplification of anti-hyper-
tensive drug effects. Disease physiology may con-
tribute

Deaths 14,753 1.22
(1.05–1.43)

↑ 3.6% (95% CI 2.4–4.8) mortality increase per 1
°C temperature increase above region-specific
heat threshold [29]

Stroke of un-
known origin
(I64)

EHA 11,280 1.04
(0.86–1.26)

↔ No significant heat effect for combined stroke
events [30]c

Yes [31, 32]d Mortality increase: Heat-induced amplification of
anti-hypertensive drug effects possible due to co-
morbiditiesDeaths 15,296 1.2

(1.02–1.4)
↑ RR 1.53 (95% CI 0.9–2.15) on hot days for is-

chaemic and haemorrhagic stroke combinedc

Arrhythmia
(I44–49)

EHA 49,835 0.97
(0.89–1.05)

↔ 2.8% (95% CI 0.9–4.9) increase of emergency
room visits per 10 °F [16]

Some diagnoses
(e.g., atrial fibrilla-
tionc)

Mortality increase: Heat-induced amplification of
anti-hypertensive drug effects may contribute

Deaths 11,323 1.29
(1.08–1.55)

↑ 5% (95% CI 3.2–6.9) mortality increase per 1 °C
temperature increase above region-specific heat
threshold [29]

Myocardial
infarction
(I21-22)

EHA 68,861 0.88
(0.82–0.95)

↓ RR 1.016 (95% CI 1.004–1.028) for 1 °C in-
crease [33]

Yesc EHA reduction: cardioprotective heat effects possi-
ble

Deaths 20,081 1.01
(0.88–1.16)

↔ RR 1.639 (95% CI 1.087–2.470) for a heatwave
[26]

CI: confidence interval; ER: emergency room; RR: relative risk
a For deaths: based on primary cause of death representing the underlying (not the immediate) cause of death, except for myocardial infarction (details in Table S4
b Comparison of the 98th percentile of the daytime maximum temperature with the median
c Data available only for aggregated stroke events
d Via comorbidities, e.g., hypertension [31, 32, 34]
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pertension and diuretic treatment during hot days may thus
be less relevant for these specific patients.

For myocardial infarction and heart failure, there was a
tendency for a slight but mostly insignificant reduction in
emergency hospital admissions after an initial mortality in-
crease. Thus, an initial mortality increase may have con-
tributed to reduced admissions and mortality rates in the
subsequent days for these specific disease groups.

Strengths and limitations
To the best of our knowledge, the present study is the first
comparative study on heat-related mortality and morbidi-
ty that takes into account data on primary, underlying and
immediate causes of death. We analysed all cardiovascular
deaths and emergency hospital admissions that occurred in
the warm season between 1998 and 2016 in Switzerland
without any selection bias, resulting in a large dataset of
~160,000 cardiovascular deaths and ~250,000 emergency
admissions. We included only frequent, clinically relevant
diagnoses with established cause-effect relationships with
heat using a non-standardised framework. By doing so,
we could include the majority of cases (55% of all cardio-
vascular emergency admissions and 70% of all cardiovas-
cular deaths) while maintaining some coherence with the
ICD-10 coding framework. However, the use of aggregat-
ed data is a limitation of this paper, and statistical power
was low for some disease groups. Similar analyses in other
countries are warranted to validate the results.

We used only one temperature measurement per great re-
gion and could therefore not account for within-region or
altitude variability. However, relative day-to-day tempera-
ture variations are most relevant for this type of time-series
analysis and are well captured by a representative mete-
orological station within the study area. To check, we al-
so conducted additional analyses with data restricted to a
small area around each meteorological station, which pro-
duced similar results, although with larger confidence in-
tervals.

We focused on Tmax only and did not consider other tem-
perature indices such as daily minimum or mean tempera-
ture. Previous work on temperature-health associations in
Switzerland showed very similar results across tempera-
ture indices [5]. Other potential environmental (e.g., air
pollution) and weather (e.g., humidity) risk factors were
not included. The role of these variables as confounders of
heat-related health effects is still debatable [48, 49]. Our
framework can be used to examine such potential environ-
mental risk factors and cumulative days of extreme tem-
perature that may enhance the heat effect [12, 50].

Inherently, considerable uncertainty remains regarding the
habits of doctors during the process of cause of death cod-
ing. Although including data on underlying and immedi-
ate causes of death offered some insights, this limitation
should be addressed by future qualitative research on the
death coding process in practice. Finally, a study direct-
ly examining antihypertensive treatment as a possible risk
factor during periods of heat is warranted.

Figure 2: Heat-related “gap” between emergency hospital admissions and mortality for two key cardiovascular diseases. The reduction in
emergency hospital admissions and the increase in deaths can be explained by a combined effect of heat and antihypertensive drugs. RR: rel-
ative risk
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Conclusions

A significant mortality increase for hypertension, heart
failure, stroke of unknown origin and arrhythmia was ac-
companied by a significant decrease in emergency hospi-
tal admissions for hypertension, heart failure and myocar-
dial infarction in high ambient temperatures. The opposite
heat effect was most prevalent for diseases routinely treat-
ed with antihypertensive drugs. Pathophysiological consid-
erations, comorbidity patterns and the coding of chronic
diseases as primary cause of death indicate that an am-
plification of antihypertensive drug effects by heat plausi-
bly explains the seemingly paradoxical mortality increase.
Given the projected increase of heatwaves in the future,
public health programmes and clinicians should increase
vigilance for signs of heat-related illness in patients on an-
tihypertensive drugs during periods of heat.
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Appendix: Supplementary material   

Figure S1. Map of Switzerland showing the seven study regions and corresponding measurement station of 

temperature of the Swiss Monitoring Network. 
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Figure S2: Sensitivity analysis: All models use natural splines for the temperature- and the lag dimension. The model descriptions refer to the position of knots in the 

temperature dimension, followed by the lag period (e.g. 10-75-90_lag10: Knots at the 10th, 75th and 90th percentile of the Tmax distribution, maximum lag period 10 

days). For the lag dimension, two equally spaced knots on the log scale were used. Results from the model used in the main analysis is colored in black. Disease groups 

>10.000 cases. 

 



 

Swiss Medical Weekly  Swiss Med Wkly. 2021;151:w30013, Appendix Page A-3 
 
Published under the copyright license “Attribution-NonCommercial-ShareAlike 4.0.  
No commercial reuse without permission. See https://smw.ch/permissions 
 

 

Figure S3: Sensitivity analysis: All models use natural splines for the temperature- and the lag dimension. The 

model descriptions refer to the position of knots in the temperature dimension, followed by the lag period (e.g. 

10-75-90_lag10: Knots at the 10th, 75th and 90th percentile of the Tmax distribution, maximum lag period 10 

days). For the lag dimension, two equally spaced knots on the log scale were used. Model used in the main 

analysis is colored in black. Disease groups <10.000 cases. 

 

  



 

Swiss Medical Weekly  Swiss Med Wkly. 2021;151:w30013, Appendix Page A-4 
 
Published under the copyright license “Attribution-NonCommercial-ShareAlike 4.0.  
No commercial reuse without permission. See https://smw.ch/permissions 
 

Figure S4: Deaths by disease groups, sex and age. Area size is proportional to the numbers of cases. 

 

 
 

  



 

Swiss Medical Weekly  Swiss Med Wkly. 2021;151:w30013, Appendix Page A-5 
 
Published under the copyright license “Attribution-NonCommercial-ShareAlike 4.0.  
No commercial reuse without permission. See https://smw.ch/permissions 
 

Figure S5: Emergency hospital admissions by disease groups, sex and age. Area size is proportional to the 

numbers of cases. 

 

-  
-  
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Figure S6: Relative risks (RR) for emergency hospital admissions (EHA) and mortality, for cardiovascular 

disease groups <10.000 cases, by daytime maximum temperature, all age groups. RR are cumulative over the lag 

period of 10 days. Median daytime maximum temperature over the study period used as reference. 
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Figure S7: Relative risks (RR) for emergency hospital admissions (EHA) and mortality, for cardiovascular 

disease groups >10.000 cases, by age group and daytime maximum temperature. RR are cumulative over the lag 

period of 10 days. Median daytime maximum temperature over the study period used as reference. 

 

 
-  
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Figure S8: Relative risks (RR) for emergency hospital admissions (EHA) and mortality, for cardiovascular 

disease groups <10.000 cases, by daytime maximum temperature and age group. RR are cumulative over the lag 

period of 10 days. Median daytime maximum temperature over the study period used as reference. 

-  
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Figure S9: Lag – specific risk ratio at the 98th percentile of the temperature distribution by disease group. Disease groups ≥ 10,000 cases
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Figure S10: Lag – specific risk ratio at the 98th percentile of the temperature distribution by disease group. 

Disease groups <10.000 cases 

-  
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Table S1: Diagnostic framework: Examined disease groups with assumed heat sensitivity pathways. 

Disease group ICD-
Codes 

Exact ICD name Assumed heat sensitivity pathway 

Hypertension I10-15 Hypertension Heat > sweating, volume depletion, peripheral vasodilation > reduced preload, reduced 
afterload > reduced blood pressure 18,32 

Heart failure I50 Heart failure Heat > sweating, volume depletion, peripheral vasodilation > reduced preload, reduced 
afterload 19,20 

Arrhythmia I44 Atrioventricular and left bundle 
branch block 

Heat > Sweating > electrolyte imbalances > arrhythmia 14,15 

I45 Other conduction disorders  

I46 Cardiac arrest  

I47 Paroxysmal tachycardia  

I48 Atrial fibrillation and flutter  

I49 Other cardiac arrhythmia  

Myocardial infarction 
(MI) 

I21 Acute myocardial infarction Heat > Sweating > Blood volume reduction > effects on coagulation,  
like hypercoagulability or faster clot lysis 21,22 

I22 Subsequent myocardial infarction  

Pulmonary embolism I26 Pulmonary Embolism Heat > Sweating > Blood volume reduction > effects on coagulation,  
like hypercoagulability or faster clot lysis 
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Haemorrhagic stroke I60 Subarachnoid haemorrhage Heat > Sweating > Blood volume reduction > effects on coagulation,  
like hypercoagulability or faster clot lysis 

I61 Intra-cerebral haemorrhage  

I62 Other non-traumatic intracranial haemorrhage  

Ischaemic stroke I63 Cerebral infarction Heat > Sweating > Blood volume reduction > effects on coagulation,  
like hypercoagulability or faster clot lysis 

Stroke of unknown origin I64 Stroke, not specified as haemorrhage or infarction Heat > Sweating > Blood volume reduction > effects on coagulation,  
like hypercoagulability or faster clot lysis 

Deep vein thrombosis I80 Phlebitis and Thrombophlebitis Heat > Sweating > Blood volume reduction > effects on coagulation,  
like hypercoagulability or faster clot lysis 
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Table S2: Daily deaths and emergency hospital admissions (EHA) per cardiovascular disease group, sex and age group (<75, ≥75 years) from May to 
September between 1998-2016 in in Switzerland 

Disease group  Deaths 

(% of total CVD) 

EHA 

(% of total CVD) 

All cardiovascular diseases (I00-I99*) total 163.856 (100%) 447.577 (100%) 

male 74.039 250.228 

female 89.817 197.349 

<75 31.316 228.849 

≥75 132.540 218.728 

Arrhythmia (I44-49) total 11.323 (6.9%) 49.835 (11.1%) 

male 5.170 26.269 

female 6.153 23.566 

<75 2.740 24.878 

≥75 8.583 24.957 

Deep vein thrombosis (I80) total 508 (0.3%) 7.922 (1.8%) 

male 196 3.705 

female 312 4.217 

<75 153 4.760 

≥75 355 3.162 
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Heart failure (I50) total 14.753 (9.0%) 57.440 (12.8%) 

male 5.423 29.384 

female 9.330 28.056 

<75 1.168 14.889 

≥75 13.585 42.551 

Haemorrhagic stroke (I60-62) total 5.745 (3.5%) 18.494 (4.1%) 

male 2.513 9.758 

female 3.232 8.736 

<75 2.163 10.364 

≥75 3.582 8.130 

Hypertension (I10-15) total 17.142 (10.5%) 29.533 (6.6%) 

male 5.762 10.809 

female 11.380 18.724 

<75 2.070 12.393 

≥75 15.072 17.140 
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Ischaemic stroke (I63) total 3.594 (2.2%) 44.873 (10%) 

male 1.662 24.494 

female 1.932 20.379 

<75 717 21.041 

≥75 2.877 23.832 

Myocardial infarction (I21-22) total 20.081 (12.3%) 68.861 (15.4%) 

male 11.641 47.777 

female 8.440 21.084 

<75 6.794 43.708 

≥75 13.287 25.153 

Pulmonary embolism (I26) total 2.426 (1.5%) 24.543 (5.5%)  

male 884 11.821 

female 1.542 12.722 

<75 690 14.259 

≥75 1.736 10.284 
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Stroke of unknown origin (I64) total 15.296 (9.3%) 11.280 (2.5%) 

male 5.551 5.576 

female 9.745 5.704 

<75 1.404 4.070 

≥75 13.892 7.210 

 

*ICD-10: International classification of diseases codes, 10th revision 
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Table S3: Cumulative relative risks (RR) estimates for cardiovascular disease (CVD) mortality and emergency hospital admissions (EHA) associated with 

daytime maximum temperature (Tmax) in the total population and by age group*. 

  EHA Mortality 

Disease group Age group RR 95% CI RR 95% CI 

All CVD (I00-I99) all 0,91 0.88-0.94 1,13 1.08-1.19 

≥75 0,91 0.88-0.95 1,16 1.1-1.22 

<75 0,91 0.87-0.95 1,04 0.93-1.16 

Arrhythmia (I44-I49) all 0,97 0.89-1.05 1,29 1.08-1.55 

≥75 1,01 0.9-1.14 1,32 1.07-1.63 

<75 0,92 0.81-1.04 1,2 0.83-1.73 

Deep vein thrombosis (I80) all 0,78 0.63-0.97 0,67 0.28-1.6 

≥75 0,99 0.7-1.38 0,83 0.29-2.39 

<75 0,66 0.5-0.88 0,39 0.08-2.03 

Heart failure (I50) all 0,83 0.76-0.9 1,22 1.05-1.43 

≥75 0,86 0.78-0.95 1,24 1.06-1.46 

<75 0,74 0.63-0.87 1,03 0.61-1.74 
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Haemorrhagic stroke (I60-I62) all 1,02 0.88-1.19 0,97 0.75-1.26 

≥75 0,95 0.76-1.19 1,05 0.76-1.45 

<75 1,07 0.88-1.31 0,86 0.56-1.31 

Hypertension (I10-I15) all 0,72 0.64-0.81 1,18 1.02-1.38 

≥75 0,77 0.66-0.9 1,21 1.03-1.42 

<75 0,64 0.53-0.77 1,03 0.67-1.6 

Ischaemic stroke (I63) all 0,92 0.84-1.01 1,03 0.75-1.41 

≥75 0,98 0.86-1.11 0,85 0.6-1.21 

<75 0,87 0.76-1 2,24 1.07-4.73 

Myocardial infarction (I21-I22) all 0,88 0.82-0.95 1,01 0.88-1.16 

≥75 0,81 0.71-0.92 1 0.85-1.19 

<75 0,93 0.84-1.02 1,03 0.81-1.3 

     

Pulmonary embolism (I26) all 0,94 0.83-1.06 0,92 0.63-1.34 

≥75 0,97 0.8-1.17 0,84 0.54-1.3 

<75 0,92 0.78-1.08 1,11 0.53-2.33 
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Stroke of unknown origin (I64) all 1,04 0.86-1.26 1,2 1.02-1.4 

≥75 0,91 0.72-1.16 1,18 1-1.39 

<75 1,32 0.97-1.8 1,39 0.84-2.29 

 

* Cumulative effect over the total lag period (0-10 days), comparing the 98th percentile (22°C) with the median of the daytime maximum temperature distribution 

over the study period (32°C)
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Table S4: Agreement of primary cause of death with underlying and immediate cause of death by disease group 

Disease Group 
according to primary 
cause of death 

ICD-
Codes  

primary 
cause of 
death  

(n) 

“Primary” and 
“underlying” cause of 
death in the same disease 
group (n) 

% “Primary” and 
“immediate” cause of death 
in the same disease group  
(n) 

% Top 3 associated 
“immediate” causes 
of death 

 

Arrhythmia 
 

I44-49 11.323 7.147 63% 5.030 44% Not specified 
Cardiac arrest (I46.9) 
Sudden cardiac death 
(I46.1) 

3.827 
4.029 
691 

Deep vein thrombosis I80 508 453 89% 8 2% Pulmonary embolism 
(I26.9) 
Cardiac arrest (I46.9) 
Not specified 

356 
 
26 
20 

Heart failure I50 14.753 13.875 94% 891 6% Cardiac arrest (I46.9) 
Not specified 
Pneumonia 

4.655 
4.392 
704 

Haemorrhagic stroke I60-62 5.745 4.261 74% 1.501 26% Not specified 
Intracerebral bleeding 
(I61.9) 
Cardiac arrest (I46.9) 

2.515 
1.039 
 
344 

Hypertension I10-15 17.142 15.760 92% 99 1% Cardiac arrest (I46.9) 
Not specified 
Heart failure (I50.9) 

5.036 
3.576 
1.184 
 



 

Swiss Medical Weekly  Swiss Med Wkly. 2021;151:w30013, Appendix Page A-21 
 
Published under the copyright license “Attribution-NonCommercial-ShareAlike 4.0.  
No commercial reuse without permission. See https://smw.ch/permissions 

Ischaemic stroke I63 3.594 2.934 82% 494 14% Not specified 
Pneumonia (J69.0) 
Ischaemic stroke 
(I63.9) 

1.094 
395 
310 

Myocardial infarction I21-22 20.081 5.421 27% 14.123 70% Acute myocardial 
infarction 
Not specified 
Cardiac arrest 

12.648 
 
2.318 
351 

Pulmonary embolism I26 2.426 1.989 82% 351 14% Not specified 
Cardiac arrest (I46.9) 
Pulmonary embolism 
(I26.9) 

769 
422 
348 

Stroke of unknown 
origin 

I64 15.296 10.707 70% 4.437 29% Stroke of unknown 
origin (I64) 
Not specified 
Cardiac arrest (I46.9) 

4.437 
 
3.651 
1.473 

 




