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Abstract: Defining health-based thresholds for effective heat warnings is crucial for climate change
adaptation strategies. Translating the non-linear function between heat and health effects into an
effective threshold for heat warnings to protect the population is a challenge. We present a systematic
analysis of heat indicators in relation to mortality. We applied distributed lag non-linear models in
an individual-level case-crossover design to assess the effects of heat on mortality in Switzerland
during the warm season from 2003 to 2016 for three temperature metrics (daily mean, maximum, and
minimum temperature), and various threshold temperatures and heatwave definitions. Individual
death records with information on residential address from the Swiss National Cohort were linked
to high-resolution temperature estimates from 100 m resolution maps. Moderate (90th percentile)
to extreme thresholds (99.5th percentile) of the three temperature metrics implied a significant
increase in mortality (5 to 38%) in respect of the median warm-season temperature. Effects of the
threshold temperatures on mortality were similar across the seven major regions in Switzerland.
Heatwave duration did not modify the effect when considering delayed effects up to 7 days. This
nationally representative study, accounting for small-scale exposure variability, suggests that the
national heat-warning system should focus on heatwave intensity rather than duration. While a
different heat-warning indicator may be appropriate in other countries, our evaluation framework is
transferable to any country.

Keywords: case-crossover; temperature; heat waves; heat warnings; mortality; DLNM

1. Introduction

Heat-related mortality is a global health problem [1,2]. Exposure to high ambient
temperatures has been associated with all-cause mortality, with cardiovascular and res-
piratory diseases being identified as the main death causes [3]. A high vulnerability for
heat-related mortality is especially observed among the elderly population and in people
with pre-existing chronic diseases [4–6]. Several studies have reported a substantial burden
of mortality attributable to non-optimal temperatures [7–10] and heatwaves [11–14]. For
example, 345,000 heat-related deaths have been estimated globally among those older than
65 years in 2019. Compared to the 2000–2005 average, this constitutes an increase of 80.6%.
With climate change and the ongoing increase in the frequency, intensity, and duration of
heatwaves, the health impact of heat is likely to exacerbate [1,2,6].

Many countries have implemented heat-warning systems to protect population health
during exceptionally warm weather periods. They are a common component of adaptation
strategies and ensure a timely activation of prevention measures and emergency plans
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during heatwaves [15–19]. Some studies have demonstrated that such early warning
systems in combination with public health actions are effective in preventing deaths during
hot days, e.g., [20–22]. In some cities, however, the decline in heat–mortality association
was insignificant [21,23].

For effective heat-warning systems, the determination of the meteorological param-
eters and thresholds triggering a warning should show a clear link with health effects.
Threshold temperatures are ideally defined based on local characteristics considering both
their frequency and associated health risks [16,17]. Although heat-related health effects
are observed also during moderate warm temperatures, heat warnings are usually issued
before extreme events to avoid too many heat advisory announcements. There is neither a
standard definition of an extreme heat event nor a definition of a threshold to activating
heat-health interventions [17,24]. It is well known from multi-city and multi-country stud-
ies that the effects of a specific temperature on health can vary between regions because of
the populations’ adaptation to the regional climate and their sensitivity to heat [7,10,25].
Some warning systems such as in Germany and Spain also consider different thresholds at
the beginning and the end of the summer to account for the short-term adaptation to heat
in the course of a summer [17,26].

Assessments of the association between temperature and mortality provide insights
into the health risk of temperatures beyond specific thresholds. Heat–mortality relation-
ships are often quantified in time-series analysis, e.g., [10,27,28]. Such analyses investigate
short-term relationships between the daily number of deaths of a given location and daily
temperature data over a period of several years [29]. Weather data are mostly used from a
single monitoring station per location or region; thus, spatial contrasts in exposure within
the study area are ignored. Measurement campaigns have demonstrated a considerable
variability in temperature within a city [30]. In Switzerland, for example, night-time temper-
atures were found up to 6–7 ◦C warmer in the city compared to the surrounding area [31].
To partially overcome this, some recent time series studies have used gridded temperature
maps from climate models or interpolated weather data to derive population-weighted
exposure estimates. Such estimates may better reflect the exposure that a population is
experiencing on average, by giving more weight to zones with high population density [32].
Nonetheless, exposure misclassification cannot be ruled out, because the same exposure is
assumed for the whole population. An alternative to time-series studies are case-crossover
studies, for which individual-level death records can be used and, therefore, provide the
possibility to accurately assign the exposure history of each death case [29,33].

In Switzerland, the climate-change-induced temperature rise and more frequent and
severe heatwaves are of great concern. The annual number of days with daily maximum
temperatures reaching 30 ◦C has increased substantially in recent years, and the average
temperature increase since pre-industrial times (+2 ◦C) is nearly two times higher compared
to the global mean [34]. In recent years, periods of hot weather have occurred more often,
with particularly severe heatwaves in 2003, 2015, 2018, and 2019. The high ambient
temperatures during the three warmest summers in 2003, 2015, and 2019 have caused an
estimated 6.9%, 5.4%, and 3.5% excess mortality, respectively [14,35]. However, to date,
studies investigating heat-related mortality risk in Switzerland have only been conducted
for selected cities, based on aggregated health data or using exposure data from central
monitoring stations of a city or from relatively coarse gridded maps [9,27,28].

The aim of this study was to investigate the non-linear relationship between tempera-
ture and mortality for daily mean (Tmean), daily maximum (Tmax), and daily minimum
(Tmin) temperature using country-wide individual mortality data and high-resolution tem-
perature estimates (100 × 100 m) in a case-crossover design with distributed lag non-linear
models (DLNMs). From these analyses, we derived various potential heat-warning indica-
tors based on threshold temperatures and days of duration taking into account regional
variability and effect modification by demographics to support health-based heat warnings
in Switzerland. Additionally, we tested the effect of heatwave duration on mortality for
different threshold temperatures.
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2. Materials and Methods
2.1. Study Design

To assess the effect of heat on mortality in Switzerland, we used a case-crossover
design where exposure at the day of death of a person is compared with corresponding
exposures at selected control days. With this design, each case acts as his/her own control
for individual time-invariant confounders [33]. In the time-stratified case-crossover design,
the exposure to ambient temperature at the day of death (i.e., the ‘case’ event) is compared
with the exposure at proximate days before or after the event (i.e., the ‘control’ events).
As control days, we selected the same days of the week as the case day within the same
month and year [36]. Each case day was, thus, matched with three to four control days.
This enabled controlling for long-term and seasonal trends and for potential effects of the
day of the week on mortality within the study area.

We first estimated the relationship between temperature and mortality in Switzerland
using all data and separately for seven major regions during the warm season (May to
September) between 2003 and 2016. This allowed us to explore the effect of potential
threshold temperatures for heat warnings. The regional analyses aimed to explore effect
modification and determine whether acclimatization to regional climates requires different
threshold temperatures for heat warnings. We examined the temperature–mortality associ-
ation for the seven major regions defined by the Federal Statistical Office that represent
similar environmental and population characteristics: North-West Switzerland, Espace Mit-
telland, Lake Geneva region, Zurich, Ticino, Central Switzerland, and Eastern Switzerland
(Supplementary Material: Figure S1). In the second step, to further support health-based
heat warnings, we assessed the effect of consecutive hot days on mortality to study how
heatwave duration affects mortality.

2.2. Mortality Data

We used individual death records from the Swiss National Cohort (SNC) over a
14-year period (2003–2016). The SNC is a long-term cohort based on the linkage of national
census and mortality records for the whole Swiss population. The anonymized records
included information on age and residential address [37]. We restricted the analyses to
non-external deaths (International Classification of Diseases, 10th revision (ICD-10) codes
A00-R99) among the permanent resident population occurring during the warm season
(May to September).

2.3. Temperature Data

We used 100 m resolution maps of Tmean, Tmax, and Tmin to extract daily ambient
temperature levels at the home address for each of the case and control event days. The
daily temperature grids cover the whole country, and were produced by the temperature
model by Flückiger et al. [38]. This model predicts daily air temperatures separately for
Tmean, Tmax, and Tmin at 2 m above ground level across Switzerland for the period
from 2003 to 2018 leveraging satellite data, atmospheric re-analyses data, station-based
temperature measurements, and land-use variables in a machine learning framework.
The fine spatial resolution of 100 × 100 m allows for capturing intra-urban temperature
variability, and represents a substantial improvement upon central monitors or coarser-
resolution exposure maps (2 × 2 km) available for Switzerland [39]. Compared to similar
temperature models developed for France or Northeastern USA [40,41], the individual
models for the years 2003–2018 performed well in predicting temperature data with R2

ranging from 0.94 to 0.99 and RMSE from 1.05 to 1.86 ◦C.

2.4. Statistical Analyses
2.4.1. Temperature–Mortality Associations

We estimated the temperature–mortality associations in Switzerland separately for
three temperature indicators (Tmean, Tmax, and Tmin). To produce the exposure–response
functions, we ran conditional logistic regression models in a case-crossover study design
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with DLNMs [42]. The DLNM method allows for accounting for non-linear and delayed
effects of temperature and relies on the definition of a cross-basis function. We modeled
the exposure dimension of the cross-basis term with a quadratic B-spline with two internal
knots placed at the 50th and 90th percentile of the warm-season temperature distribution for
Tmean and Tmax, and with one internal knot placed at the 75th percentile for Tmin. The lag
dimension was specified as a natural cubic spline with two internal knots placed at equally
spaced values on the log scale. A maximum lag of seven days was used to capture lagged
effects up to a week before death and to account for short-term harvesting. The applied
model parameters were similar to previous studies investigating temperature–mortality
associations during the warm season [9,27,43–45]. We selected the model parameters
during preliminary analyses and validated them using Akaike’s criterion (AIC). All models
also included an indicator variable for national public holidays.

2.4.2. Threshold Temperatures

We present odds ratios (ORs) of mortality as the change in mortality risk from the
median warm-season temperature to different potential threshold temperatures for heat
warnings (90th, 92.5th, 95th, 98th, 99th, and 99.5th percentiles of the warm-season tempera-
ture distribution) to characterize the effect of heat intensity on mortality. These threshold
temperatures are similar to previous heatwave studies [11,24,46,47] and represent the
whole range of absolute temperature levels in terms of integers between the 90th and 99.5th
percentile of Tmean, Tmax, and Tmin in our dataset (Table S1). We included the 99.5th
percentile as a potential threshold because such extreme temperatures are likely to become
more common in the study area [34]. To simplify the description and comparability of
the results across the three temperature metrics, we refer to the thresholds as percentiles
rather than absolute numbers. The median temperature was used as a reference as it
approximately corresponds to the long-term optimum temperature in the study area at
which temperature-related mortality risk is at a minimum during the warm season [27].
ORs are reported as cumulative risks over the whole lag period (lags of 0–7 days).

2.4.3. Evaluation of Regional Variability

We ran separate case-crossover models for each of the seven major regions to inves-
tigate whether the threshold temperatures corresponding to the 90th, 92.5th, 95th, 98th,
99th, and 99.5th percentile of the overall Tmean distribution across Switzerland result in
different mortality risk estimates among the regions. While the health effect of a specific
temperature may vary between regions because of different optimum temperatures, the
shapes of the curves may differ. This could imply different effects of a certain temperature
in respect of the reference temperature, even if the optimum temperature would be similar.
Thus, we assessed the regional variability of threshold-related mortality effects based on
two approaches. First, we computed the region-specific risk estimates by centering the
exposure–response curves of each region on the overall median Tmean (17 ◦C) across the
whole study area, ignoring regional differences of the optimum temperature. Knots of the
exposure dimension of the DLNM cross-basis functions were placed at the same absolute
temperatures as in the overall analysis for total Switzerland. Second, for each region, we
investigated the effect of a given temperature threshold on mortality based on the deviation
from the median of the region’s own temperature distribution. Following the approach of
previous multi-country temperature-mortality assessments, e.g., [10], the placement of the
knots in the exposure dimension of the cross-basis function was based on the region-specific
temperature distribution (50th and 90th percentile). To additionally study whether the ORs
of mortality associated with the exceedance of a given threshold varies between regions,
we assessed the between-region heterogeneity (with the I2 statistics) using random-effects
meta-analysis.
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2.4.4. Stratified Analyses by Age Group, Season, and Time Period

Additionally, we explored differences in effect estimates associated with the threshold
temperatures by age group, season, and time period. For all temperature metrics, we
conducted stratified analyses by two age groups (<75 years, 75+ years), for early (May
to July) and late summer (August to September), and for two time periods (2003–2009
versus 2010–2016). The chosen time periods split the data series in two equal parts, with
the more recent time period characterized by a higher health risk awareness of hot weather.
For the analysis by time period, the model parameters of the DLNM were applied to the
period-specific temperature distributions and the period-specific median temperature was
used as the reference. As we were interested in the potential differences in effects of specific
temperatures between the two time periods, we compared ORs of mortality associated
with absolute temperature thresholds rather than with period-specific percentiles. As a
sensitivity analysis, the year 2003 was excluded from the comparison, because it was an
exceptional year in terms of heat-related mortality.

2.4.5. Effect of Heatwave Duration

To examine whether several consecutive days of high ambient temperatures have an
additional effect on mortality versus a single hot day, we estimated the effect of differ-
ent heatwave definitions by combining the various temperature thresholds explained in
Section 2.4.2 with information on days of duration. As a first approach, we explored the
effect of hot weather periods when Tmean reached at least the 90th, 92.5th, 95th, 98th, 99th,
and 99.5th percentiles of the warm-season temperature distribution (i.e., May to September)
during at least two, three, and five consecutive days. Thus, in total, 15 heatwave definitions
with different intensities and durations were tested in relation to the mortality increase
in Switzerland. A heatwave of, for example, three days occurred when a given threshold
temperature was reached on a case or control event day and had been lasting for at least
three days. We ran conditional logistic regression models for each heatwave definition
by including an indicator variable for heatwave (yes/no) and an indicator variable for
national holidays.

In addition, as a second approach, similar to Gasparrini and Armstrong [46], we
replaced the heatwave indicator by a numeric variable describing the number of consecutive
days before and on the day of death during which Tmean has been above the threshold.
For example, if someone died on the second day of any particular heatwave, the variable
was set to two. The maximum length of heatwave duration was determined to be 10 days.
We modeled the number of consecutive heatwaves days as penalized smoothing splines
(p-splines) [48].

Models with both heatwave variables (heatwave indicator and numeric variable of
heatwave duration) were run with and without the cross-basis function for Tmean to further
explore the potential added effect of duration above the mortality impact of temperature
and corresponding lagged effects up to seven days.

We used R software (version 4.0.3) to conduct all data analyses, except for the meta-
analysis, which we performed in STATA using the package metan [49]. The DLNM models
were fitted in R with the dlnm package following the exposure history approach described
by Gasparrini [50].

3. Results

In total, 300,295 deaths from natural causes were registered with complete address
information in the SNC between the warm season of 2003 to 2016 (Table 1). The majority
of the deaths (70%) occurred in people aged 75 years and older, and 51% of the study
population were females. We observed no differences in temperature exposures by sex and
age group. Across the whole study area, the median of estimated exposures to Tmean was
17 ◦C (range: 4–30 ◦C). The variability in exposure between regions was modest with the
median Tmean ranging between 16 ◦C and 19 ◦C, representing the expected differences in
regional climates. In the warmest region of Switzerland, Ticino, the median Tmean (19 ◦C),
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Tmax (25 ◦C), and Tmean (14 ◦C) were 2 ◦C to 3 ◦C higher compared to the respective
overall median. The lowest median values of Tmean (16 ◦C) and Tmax (21 ◦C) were
estimated for Eastern Switzerland, which is, on average, of higher altitude than the other
regions. Overall, Tmean was highly correlated with Tmax (Pearson correlation coefficient:
0.97) and with Tmin (0.91).

Table 1. Description of the number of deaths (by region and time period) and ambient daily mean
temperature (Tmean), daily maximum temperature (Tmax), and daily minimum temperature (Tmin)
on days of death and control event days during the warm season of 2003–2016.

Deaths 1 Tmean (◦C) 2 Tmax (◦C) Tmin (◦C)

n (%) p5 p50 p98 p99 p5 p50 p98 p99 p5 p50 p98 p99

Switzerland 300,295(100) 10.1 17.0 25.0 25.9 13.8 22.4 32.5 33.6 6.0 12.3 18.5 19.1
Period 2003–2009 3 149,989(50) 10.2 17.1 24.9 25.7 14.0 22.5 32.4 33.7 5.9 12.4 18.3 18.9
Period 2010–2016 3 150,306(50) 10.0 16.9 25.2 26.0 13.6 22.3 32.6 33.6 6.1 12.2 18.6 19.3
Nordwestern Switzerland 41,583 (14) 11.1 17.6 25.5 26.5 14.8 23.2 33.5 34.6 6.7 12.8 18.6 19.1
Espace Mittelland 72,619 (24) 9.8 16.5 24.4 25.3 13.6 22.0 32.1 33.3 5.6 11.8 17.8 18.4
Zurich 50,462 (17) 10.4 17.1 25.2 26.0 13.8 22.4 32.8 33.9 6.4 12.6 18.4 18.9
Central Switzerland 25,785 (9) 9.6 16.5 24.3 25.1 13.1 21.6 31.7 32.7 5.8 12.0 17.9 18.4
Estern Switzerland 42,582 (14) 8.8 16.0 24.1 24.9 12.5 21.1 31.5 32.6 5.0 11.6 17.6 18.1
Lake Geneva region 53,419 (18) 10.7 17.6 25.5 26.5 14.8 23.1 32.7 33.9 6.5 12.8 19.1 19.8
Ticino 13,845 (5) 12.8 19.1 25.9 26.6 17.0 24.9 32.7 33.5 8.5 14.3 19.9 20.6

p5: 5th percentile; p50: median; p98: 98th percentile; p99: 99th percentile, 1 Includes natural deaths of permanent
residents living in Switzerland; 2 Tmean refers to 24 h mean temperature; 3 Time periods split the entire study
period in two equal parts, and the more recent time period is characterized by a higher heat risk awareness.

3.1. Exploration of Threshold Temperatures

Figure 1 presents the cumulative exposure–response functions for Tmean, Tmax, and
Tmin, as well as the lag-specific ORs at the 98th percentile using the median temperature
as a reference for the total study sample. Significant effects on mortality were observed
for Tmean, Tmax, and Tmin at 20 ◦C, 26 ◦C, and 17 ◦C, respectively. Cumulative ORs of
mortality for threshold temperatures corresponding to the 90th, 92.5th, 95th, 98th, and
99.5th percentile are provided in the Supplementary Material (Table S1). In general, a higher
temperature threshold had higher effect estimates. When temperatures reached the 98th
percentile of the warm-season Tmean (25◦), Tmax (33 ◦C), and Tmin (18 ◦C), the mortality
risk increased significantly by 18% (OR: 1.18 (95% confidence interval CI: 1.15; 1.22)), 21%
(OR: 1.21 (1.17; 1.25)), and 11% (OR: 1.11 (1.08; 1.14)), respectively, over lags 0–7. Lower
cumulative effect estimates for Tmin than for Tmax and Tmean partly arose by different
lag patterns. While we observed increased ORs up to five days after the hot day (lag 0–5)
for Tmax, warm nights only showed a strong immediate effect on mortality on the same
day (lag0). Additionally, for Tmin, a significant increase in OR was only observed from
17 ◦C (corresponding to the 90th percentile) and higher. For Tmax and Tmean, mortality
risk rose sharply after temperatures above the median value.

To assess whether the median temperature was an appropriate approximation of the
minimum-mortality temperature (MMT) during the warm season, we also obtained the
MMT from the temperature–mortality associations. The MMTs (indicated as blue lines in
Figure 1) were similar to the median temperatures (left dashed lines in Figure 1). Thus, the
mortality risks at the various threshold temperatures did not differ when using the MMT
instead of the median temperature as reference.

3.2. Analyses by Age Group, Season, and Time Period

For all inspected threshold temperatures above the 90th percentile of warm-season
Tmean, Tmax, and Tmin, cumulative ORs were significantly higher in the older (75+ years)
than in the younger age group (p-values ≤ 0.01) (Figure S2, Table S1). For people <75 years,
significant effects were only observed for temperatures exceeding the 98th percentile
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(Tmean, Tmax) or 99th percentile (Tmin). The difference in effect among age groups was
most evident for Tmin. The increase in mortality on lag 0 of a hot day with Tmin equal to
18 ◦C (98th percentile) was about two times higher in the population 75+ (OR = 1.13 (1.10;
1.16)) than in the younger age group (OR = 1.06 (1.02; 1.11) (Figure S2).
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Figure 1. Odds ratios (ORs) of mortality associated with daily mean (Tmean), daily maximum (Tmax),
and daily minimum (Tmin) temperature in Switzerland (May–September 2003–2016). Plots in the first
row show the cumulative exposure–response association with the 95% confidence interval over one
week (lags 0–7). Blue solid vertical lines are minimum mortality temperatures and dashed lines are
the 50th (median) and 98th percentiles. Plots in the second row show the lag-specific ORs with 95%
confidence intervals at the 98th percentile of the warm-season temperature distribution in respect of
the median warm-season temperature.

Stratified analyses by season showed higher associations with mortality in early
than late summer (Table S2). The comparison of the two time periods (2003–2009 versus
2010–2016) revealed a decrease in heat sensitivity in the more recent time period (Figure 2),
but temperature–mortality associations were significant for all threshold temperatures and
temperature metrics in both periods (Table S3). For Tmean, the cumulative ORs of mortality
at temperatures reaching 25 ◦C (98th percentile of warm-season temperature distribution
in both periods) were significantly lower during 2010–2016 (OR = 1.13 (1.08; 1.18)) than
during 2003–2009 (OR = 1.24 (1.19–1.30)). The difference remained statistically significant
(p-value < 0.05) when excluding the year 2003 (Figure S3, Tables S4 and S5).

3.3. Regional Variability

Region-specific associations between Tmean and mortality over the entire study period
are shown in Figure 3, treating the overall median (17 ◦C) as the reference temperature.
The shapes of the exposure–response curves of the seven regions were similar to the overall
curve for Switzerland. We observed the highest cumulative ORs at the 98th percentile of
warm-season Tmean (25 ◦C) for urban regions such as Zurich, the Lake Geneva region,
and North-Western Switzerland. Heat-related ORs in the colder regions (Central and
Eastern Switzerland) tended to be lower, but had a higher uncertainty in their estimates,
especially for the very warm temperatures. However, as shown in Figure 4 for the threshold
corresponding to the 98th percentile of warm-season Tmean, we observed no significant
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(p > 0.05) between-region heterogeneity for any of the thresholds. Thus, the region-specific
OR of mortality associated with the exceedance of a particular threshold temperature did
not statistically vary across regions. The forest plots of all Tmean thresholds are provided in
the Supplementary Material (Figure S4). Estimating the threshold-related ORs of mortality
of a given region using the region-specific median Tmean instead of the overall Tmean as
the reference temperature (and, therefore, accounting for adaptation to the regional climate)
did not change these results (Figure S5).
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3.4. Effect of Heatwave Duration

Overall, we did not observe an added effect of heatwave duration on mortality when
including a heatwave variable in the models assessing temperature–mortality associations
using DLNMs. Neither the inclusion of a heatwave indicator (yes/no) nor the inclusion
of a numeric variable of consecutive hot days had a significant impact on mortality risk
(Table S6).
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Figure 4. Forest plot of region-specific Odds Ratios (ORs) of mortality associated with Tmean
exceeding 25 ◦C. The threshold of 25 ◦C corresponds to the 98th percentile of the daily mean
temperature (Tmean) distribution during the warm season in Switzerland between 2003 and 2016.
ORs are reported for a cumulative 7-day lag in respect of the overall median Tmean.

Figure 5 illustrates the effect of several consecutive hot days of different Tmean
thresholds compared to non-heatwave days without accounting for delayed effects of hot
days. ORs of mortality are shown for 15 heatwave indicators (yes/no), with the effect of
one hot day for comparison. Longer durations tended to result in higher ORs. The influence
of heatwave duration decreased with increasing temperature threshold and was virtually
absent for the most extreme temperature threshold. While heatwaves with a threshold
defined at the 90th percentile of warm-season Tmean (≥22 ◦C) over at least 2 to 5 days
occurred in Switzerland every year between 2003 and 2016, extreme heatwaves with a
Tmean threshold defined at the 99.5th percentile (≥27 ◦C) during at least five consecutive
days were registered only for a few death cases (n = 235) during the hot summers 2003 and
2015 (Table S7). This explains the wide confidence intervals of the respective ORs.
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4. Discussion

We conducted a national case-crossover study to assess the temperature-mortality as-
sociation for Tmean, Tmax, and Tmin during the warm season of 2003–2016 in Switzerland
using individual-based death records and high-spatiotemporal-resolution (100 × 100 m;
daily) temperature data. Temperatures exceeding the 90th, 92.5th, 95th, 98th, and 99th
warm-season percentiles were significantly associated with substantial increases in mor-
tality risk on the hot day itself and in the following week. We generally observed higher
vulnerability in the elderly population and at the beginning of the summer. For the less
vulnerable population <75 years old, no significant effect on mortality was observed for
temperatures below the 98th percentile of Tmean and Tmax and below the 99th percentile
of Tmin. Effects of the assessed threshold temperatures on mortality were similar across the
seven major regions in Switzerland, suggesting that a common threshold temperature for
heat warnings is valid for the whole country. The duration of a heatwave played a minor
role in determining heatwave-related mortality risk.

The shape of the association between heat and mortality observed in this study re-
sembles that of a previous time-series study using data from eight cities in Switzerland
between 1995 and 2013 [27]. After the exceptionally hot summer of 2003, several cantons
have implemented public health measures to raise awareness on heat threats and to protect
the health of vulnerable populations. Some cantons in the Lake Geneva region and the
canton of Ticino have introduced heat-health actions plans (HHAPs) following the rec-
ommendations from the World Health Organization between 2004 and 2009 [51]. While
the previous Swiss study found no significant decrease in health risk associated with high
daily maximum apparent temperatures in the period after 2003 [27], we found significantly
lower ORs of mortality associated with the Tmean threshold of 25 ◦C in the more recent
decade (2010–2016) than between 2004 and 2009. This supports findings from studies in
Italy, Spain, and Germany, which suggested that adaptive measures to the changing climate
are effective [16]. It is possible that the public health measures introduced by cantonal
HHAPs together with intensified media reports about heat-related health effects during
heatwaves have helped to increase the heat-health risk perception and minimize the heat-
related impact on mortality in Switzerland, especially in the warmest regions and among
the elderly. Previous assessments of excess mortality during the warm summers 2015, 2018,
and 2019 found a generally lower excess mortality in the Lake Geneva Region and in the
Ticino than in other regions, despite more intense heatwaves [14,35]. However, how much
prevention programs and heat alerts reduced the mortality risk during hot days is difficult
to quantify as other improvements in public health, physiological adaptation, technological
advances, and changes in the built environment may have helped to prevent heat-related
deaths [18,52]. This includes, for example, policies aimed to improve the general health
status of the population (e.g., smoking ban in public spaces), a wider application of air
conditioning systems (mainly at workplaces and in public transport), and urban planning
interventions toward greener cities. In addition, whether measures to increase the adaptive
capacity of the population are still effective when heatwaves become both more frequent
and intense and the population continues to age is unclear. It is likely that the health impact
of heat will increase [2,6].

The mortality risk associated with different thresholds was similar among the seven
regions. We did not observe a higher vulnerability to extreme temperatures in the colder
regions (Central and Eastern Switzerland), which are expected to be least adapted to
hot temperatures compared to the more urban areas (Zurich, Lake Geneva region, and
North-Western Switzerland) and the South part of Switzerland (Ticino) where extreme
temperatures are more frequent, also due to urban heat island effects. This may be surpris-
ing, as previous studies have shown that the vulnerability to heat varies spatially [10,25].
These studies generally covered cities from various countries, climates, and socioeconomic
differentials, whereas in Switzerland, the climate varies over relatively small distances
mainly due to the complex alpine topography. Most of the population, however, lives in
urban and sub-urban areas (73%) and only a small percentage in mountainous areas [53].
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While we cannot rule out that exposure–response functions vary by community, city, or
canton, we found no evidence that the temperature threshold of heat warnings should be
different between the seven major regions in Switzerland. A common heatwave definition
in a small country such as Switzerland is advantageous, in that it simplifies communication
of a heat alert. This is important for prevention given that many people commute between
regions on a daily basis.

In agreement with previous studies, the intensity of a heatwave was more relevant for
the mortality risk than its duration [11,46]. Similar to other studies, we observed delayed
effects of up to four days of a hot day [9,45]. It has been suggested that these lagged
effects are important to understand the health impact of heatwaves [11,54]. Long-lasting
heatwaves may appear to have a higher impact on mortality than shorter periods of hot
weather because of cumulating effects over several hot days. For instance, for a 3-day
heatwave, the effects of the third day include the lagged effects of the first and second
day. For the most extreme threshold (99.5th percentile of warm-season Tmean), an effect of
duration was not observed. However, when we controlled for the lagged effects of Tmean
(through DLNM), the effect of duration disappeared. Thus, the duration itself had no
additional effect on the mortality risk of heatwaves. A similar result was also found in a
large multi-country study by Guo et al. [11] that included data from 400 communities from
18 countries around the world and also considered lagged effects of heatwaves. DLNMs
are, therefore, best suited to evaluate the combined effects of heat intensity and duration.
The benefits of our simple models with threshold and duration indicators are that they
directly provide an estimate of the mortality risk for certain heatwave warning definitions
that may be considered to be implemented.

Consequently, for the development of a heat-warning system, the focus should be
more on the intensity than on the duration of a heatwave. Even single hot days have an
impact on mortality. However, it may not be advisable to issue high-temperature warnings
that activate a range of public health measures for less than three forecasted consecutive
hot days. This would not be cost-effective and would imply too frequent warnings and
might cause the population to ignore them, thus rendering them ineffective [55]. Measures
to be activated when issuing a heat warning include the dissemination of information on
heat-related health risks and recommendations on how to protect health. Stakeholders in
the health and social sector are advised to activate their emergency plans and other local
interventions to protect the most vulnerable population [16,19].

Furthermore, while the duration may not be important for mortality, the impact of
long-lasting heatwaves on other heat-related health aspects such as certain morbidity
outcomes not assessed in this study may be greater [47,55–57]. Similarly, selecting the ‘best’
threshold used for heat advisories also implies a trade-off between associated health risks
and the frequency of a given threshold temperature, both in the present and future. This
may be an argument for using heat indicators, which are adapted to the regional climate,
even if our study indicates that no major differences in exposure–response associations
were observed across seven major regions. Especially in larger countries than Switzerland,
regional heatwave definitions may be more relevant. It has to be emphasized that health
risks associated with summer temperatures are observed even for temperatures below the
evaluated thresholds (<90th percentile), especially in the elderly population. Thus, while
heat warnings should be used to identify extreme and very extreme heatwaves, adaptation
strategies are also needed to reduce the burden of moderate hot weather periods, which
occur more often [10]. Further analyses are warranted to study threshold temperatures
of specific risk populations such as people with specific diseases or sociodemographic
characteristics to best protect them from heat exposure.

Recent research suggested that both high daytime and high nighttime temperatures are
relevant for health. Although they strongly correlate, warm nights may make an important
contribution to heat-related mortality especially among the elderly population because the
body cannot recover sufficiently from the heat experienced during the day [27,43,44]. On
the other hand, high daytime temperatures are also important because they mostly occur
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during afternoon hours when (outdoor) activities are carried out and they concern workers.
Thus, to define heat-warning thresholds based on Tmean, which is an average over 24 h
and, therefore, takes both nighttime and daytime hours into account, it may appropriately
reflect the exposure of the whole day and also considers different heat vulnerabilities of the
population [47]. The choice of Tmean for the determination of heat-warning thresholds
may, therefore, be appropriate in Switzerland. However, as high Tmin usually occurs
during the night when most people are at home, health risks during this time of the day
may be mediated by urban heat islands and the insulation of the residential buildings.
Recently, attempts to reduce heat exposure in buildings and urban city centers have become
more important in Switzerland. The population with a high socio-economic status may
profit more from such interventions than others [9]. Thus, health effects of high Tmin may
become more variable than for Tmax.

This is the first nation-wide assessment using individual-level data examining the
temperature–mortality association for three temperature metrics for the whole country of
Switzerland over a long time period (2003–2016). Our evaluation framework is transferable
to any country to derive locally adapted heat-warning indicators. The strength of this
study is that we used individual death records with information on residential address
and temperature data of high spatial resolution (100 × 100 m) to assign exposure [38].
Exposure–response functions are, thus, representative for the whole country and take into
account the small-scale variability in exposure within the study area. Our study likely
provides unbiased and more precise effect estimates than most case-crossover and time-
series studies that use health data with less detailed address information and exposure
data of coarser spatial resolution.

A limitation of this study is that we only assigned temperature levels at the residential
addresses and ignored exposure while away from home. Thus, some exposure misclassifi-
cation is to be expected, especially in the working population. Non-differential exposure
misclassification could produce an underestimation of heat effects. However, the majority
of the study population was ≥75 years old and was likely spending most of their time at
home. Another limitation is that we did not consider other potential environmental risk
factors such as air pollution. During periods of hot weather, ozone levels in particular tend
to be high and may increase the health risk of heat. However, previous studies have found
that there is an independent effect of temperature on mortality, and that the acute effect of
ozone on mortality is relatively small [58,59]. Including air pollutants as potential effect
modifiers in estimating the exposure–response function may complicate the interpretation
of the direct heat effect. Additionally, for the public health intervention, it is of minor
relevance whether deaths during a heatwave are related to heat or are the consequence
of an indirect effect from elevated ozone concentrations. Similarly, relative humidity was
not included, due to the lack of data of sufficient spatial resolution. Several countries use
a heat index to describe the discomfort resulting from combined heat and high humidity.
Previous studies in Switzerland and elsewhere showed, however, that temperature metrics
considering humidity were highly correlated with Tmean and Tmax, and did not show
significant differences in effect estimates [27,28,60]. Moreover, in recent years, there is a
trend to favor heat-warning thresholds of dry temperature over more complicated heat
indices because it is easier to derive and communicate them, and to study their frequency
in climate scenarios (personal communication with MeteoSwiss).

5. Conclusions

This study presents a systematic analysis of heat indicators in relation to mortality
across Switzerland over a period of 14 years. It adds to the existing body of evidence that
heat is a relevant risk factor for mortality in Switzerland. It suggests that heat warnings in
Switzerland using the same threshold temperature across the country are valid, because no
major differences in effects were observed across seven major regions. As the intensity of a
heatwave showed a more detrimental effect on mortality than the duration, the different
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levels of the heat-warning system to define the danger of a heatwave should rather be
based on the intensity than on the duration of a heatwave.
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